Sabtu, 13 Juni 2015

Artikel


Analisis dan Aplikasi Kromatografi Cair Kinerja Tinggi (KCKT)/ High Performance Liquid Chromatography (HPLC)

Oleh : Erasti Pratiwi


Pendahuluan
Kromatografi cair kinerja tinggi (KCKT) merupakan sistem pemisahan dengan kecepatan dan efisiensi yang tinggi karena didukung oleh kemajuan dalam teknologi kolom, sistem pompa tekanan tinggi dan detektor yang sangat sensitive dan beragam sehingga mampu menganalisis berbagai analit secara kualitatif maupun kuantitatif, baik dalam komponen tunggal maupun campuran. KCKT disebut juga dengan High Performance Liquid Chromatography (HPLC) atau High Pressure Liquid Chromatography atau Modern Liquid Chromatography merupakan teknik pemisahan yang diterima secara luas untuk analisis dan pemurnian senyawa tertentu dalam suatu sampel pada sejumlah bidang, antara lain : farmasi, lingkungan dan industri-industri makanan (Ditjen POM, 1995).
Salah satu contoh insturmentasi kromatografi adalah Hight Performance Liquid Chromatograhy (HPLC) dan Gas Chromatography (GC). HPLC merupakan teknik pemisahan kromatografi yang menggunakan cairan sebagai fasa gerak dan sebagai fasa diam dapat berupa suatu padatan atau senyawa tertentu yang terikat secara kimia dengan padatan pendukungnya. GC adalah teknik pemisahan suatu komponen yang didasarkan pada perbedaan distribusi dua komponen pada fase diam (padat/cair) dan fase gerak (gas) (Day dan Underwood, 2002). Kedua instrumentasi ini mempunyai kelebihan dan kelemahannya masing-masing.
Kromatografi Cair Tekanan Tinggi, HPLC ini juga merupakan bentuk kromatografi kolom yang sering digunakan dalam biokimia dan analisis kimia untuk memisahkan, mengidentifikasi, mengukur dan memanjang. HPLC memanfaatkan kolom yang memegang chromatographic bahan kemasan (tahap tak berubah), sebuah pompa yang bergerak selular fase (s) melalui kolom, dan detektor yang menunjukkan ingatan waktu Molecules. Retensi waktu bervariasi tergantung pada interaksi antara keadilan tahap, yang Molecules yang dianalisis, dan larutan (s) yang digunakan.
Kromatografi jenis ini menggunakan fase gerak berupa cairan yang dialirkan dengan tekanan sangat tinggi sedangkan fase diamnya dapat berbagai macam, tergantung mode kromatografi yang dipilih dalam proses pemisahan.

Menurut (Putra, 2007), kelebihan KCKT dibandingkan dengan metode lain antara lain mampu memisahkan molekul-molekul dari suatu campuran; resolusinya baik; Mudah melaksanakannya; kecepatan analisis dan kepekaannya tinggi; dapat dihindari terjadinya dekomposisi/ kerusakan bahan yang dianalisis; dapat digunakan bermacam-macam detector; kolom dapat digunakan kembali; mudah melakukan recovery cuplikan; tekniknya tidak begitu tergantung pada keahlian operator dan reprodusibilitasnya lebih baik; instrumennya memungkinkan untuk bekerja secara automatis dan kuantitatif.
Cara Kerja KCKT/ HPLC

Kromatografi merupakan teknik pemisahan dimana analit atau zat-zat terlarut terpisah oleh perbedaan kecepatan elusi, dikarenakan analit-analit tersebut melewati suatu kolom kromatografi. Pemisahan analit tersebut diatur oleh distribusi dalam fase gerak dan fase diam. Untuk mendapatkan hasil analisis yang baik, diperlukan penggabungan secara tepat dari kondisi operasional seperti jenis kolom, fase gerak, panjang dan diameter kolom, kecepatan alir fase gerak, suhu kolom dan ukuran sampel (Rohman, 2007).
Komponen KCKT/ HPLC
Adapun komponen-komponen yang terdapat pada KCKT/ HPLC yaitu : (Putra, 2007)
a.        Wadah Fase Gerak
Wadah fase gerak terbuat dari bahan yang inert terhadap fase gerak. Bahan yang umum digunakan adalah gelas dan baja anti karat. Daya tampung tandon harus lebih besar dari 500 ml, yang dapat digunakan selama 4 jam untuk kecepatan alir yang umumnya 1-2 ml/menit.
b.        Pompa
Untuk menggerakkan fase gerak melalui kolom diperlukan pompa. Pompa harus mampu menghasilkan tekanan 6000 Psi pada kecepatan alir 0,1 – 10 ml/menit. Pompa ada 2 jenis yaitu pompa volume konstan dan pompa tekanan konstan. Pompa terbuat dari bahan yang inert terhadap semua pelarut. Bahan yang umum digunakan adalah gelas baja antikarat dan teflon. Aliran pelarut dari pompa harus tanpa denyut untuk menghindari hasil yang menyimpang pada detektor.
c.         Injektor
Cuplikan harus dimasukkan ke dalam pangkal kolom (kepala kolom), diusahakan agar sesedikit mungkin terjadi gangguan pada kemasan kolom.
Ada tiga dasar injektor, yaitu :
  1. Hentikan aliran/ stop flow : injeksi dilakukan pada kinerja atmosfir, sistem tertutup dan aliran dilanjutkan lagi. Teknik ini bisa digunakan karena difusi di dalam aliran kecil dan resolusi tidak dipengaruhi. 
  2. Septum : injektor-injektor langsung ke aliran fase gerak umumnya sama dengan yang digunakan pada kromatografi gas. Injektor ini dapat digunakan pada kinerja sampai 60-70 atmosfir. Tetapi septum ini tidak tahan dengan semua pelarut-pelarut kromatografi cair. Disamping itu, partikel kecil dari septum yang terkoyak (akibat jarum injektor) dapat menyebabkan penyumbatan. 
  3. Katup putaran (loop valve) : Tipe injektor ini umumnya digunakan untuk menginjeksi volume lebih besar dari 10 μl dan dilakukan dengan cara automatis (dengan menggunakan adaptor yang sesuai, volume yang lebih kecil dapat diinjeksikan secara manual). Pada posisi LOAD, sampel diisi ke dalam loop pada kinerja atmosfir, bila VALVE difungsikan, maka sampel akan masuk ke dalam kolom. 

d.  Kolom
Kolom adalah jantung kromatografi. Berhasil atau gagalnya suatu analisis tergantung pada pemilihan kolom dan kondisi percobaan yang sesuai. Kolom dibagi menjadi 2 kelompok ;
  1. Kolom analitik : diameter khas adalah 2-6 mm. Panjang kolom tergantung pada jenis kemasan. Untuk kemasan pellikular, panjang yang lumrah adalah 50-100 cm. Untuk kemasan poros mikropartikulat, umumnya 10-30 cm. Dewasa ini ada yang 5 cm. 
  2. Kolom preparatif : umumnya memiliki diameter 6 mm atau lebih besar dan panjang kolom 25-100 cm. 
Kolom umumnya dibuat dari stailess steel dan biasanya dioperasikan pada temperatur kamar, tapi bisa juga digunakan pada temperatur labih tinggi, terutama untuk kromatografi penukar ion dan kromatografi eksklusi. 
e. Detektor
Suatu detektor dibutuhkan untuk mendeteksi adanya komponen cuplikan di dalam aliran yang keluar dari kolom. Detektor-detektor yang baik memiliki sensitifitas yang tinggi, gangguan (noise) yang rendah, kisar respons linier yang luas, dan memberi tanggapan untuk semua tipe senyawa.
Detektor yang paling banyak digunakan dalam kromatografi cair modern kecepatan tinggi adalah detektor spektrofotometer uv 254 nm. Bermacam-macam detektor dengan variasi panjang gelombang uv-vis sekarang menjadi populer karena mereka dapat digunakan untuk mendeteksi senyawa-senyawa dalam rentang yang luas.

Analisis HPLC
HPLC adalah alat yang sangat bermanfaat dalam analisis. Prinsip dasar dari HPLC adalah memisahkan setiap komponen dalam sample untuk selanjutnya diidentifikasi (kualitatif) dan dihitung berapa konsentrasi dari masing-masing komponen tersebut (kuantitatif). Sebetulnya hanya ada dua hal utama yang menjadi krusial point dalam metode HPLC. Yang pertama adalah proses separasi/pemisahan dan yang kedua adalah proses identifikasi. Dua hal ini mejadi faktor yang sangat penting dalam keberhasilan proses analisa.
Aplikasi analisis HPLC adalah untuk penentuan kualitatif dan penentuan kuantitatif.
Penentuan Kualitatif
            HPLC digunakan untuk analisa kualitatif didasarkan pada waktu retensi untuk identifikasi. Identifikasi dapat diandalkan apabila waktu retensi sampel dibandingkan dengan larutan standar.
Penentuan Kuantitatif
   Beberapa hal yang harus diperhatikan agar HPLC dapat dipergunakan untuk penentuan secara kuantitatif adalah:
1)             Parameter percobaan sama antara standar dan sampel
2)             Penentuan berdasarkan waktu retensi sampel dan standar yang sama
3)             Penentuan kadar dilakukan berdasarkan hubungan (korelasi) dengan menggunakan larutan standar seri pada waktu retensi tertentu.
·                Berdasarkan area kromatogram
·                Berdasarkan tinggi puncak kromatogram
Hasil analisa HPLC diperoleh dalam bentuk signal kromatogram. Dalam kromatogram akan terdapat peak-peak yang menggambarkan banyaknya jenis komponen dalam sample.
Sample yang mengandung banyak komponen didalamnya akan mempunyai kromatogram dengan banyak peak. Bahkan tak jarang antar peak saling bertumpuk (overlap). Hal ini akan menyulitkan dalam identifikasi dan perhitungan konsentrasi. Oleh karena itu biasanya untuk sample jenis ini dilakukan tahapan preparasi sample yang lebih rumit agar sample yang siap diinjeksikan ke HPLC sudah cukup bersih dari impuritis. Sample farmasi biasanya jauh lebih mudah karena sedikit mengandung komponen selain zat aktif. Sample ini umumnya hanya melalui proses pelarutan saja.
Contoh kromatogram dengan banyak peak

Kesulitan biasanya dihadapi ketika akan mengidentifikasi suatu kromatogram yang terdiri atas banyak peak. Untuk mengetahui peak mana yang merupakan milik analat (zat target analisa) kromatogram dibandingkan dengan kromatogram standard. Cara yang paling umum untuk mengidentifikasi adalah dengan melihat Retention time (RT). Peak yang mempunyai RT yang sama dengan standard umumnya akan langsung di vonis sebagai peak milik analat. Memang senyawa/zat yang sama akan mempunyai RT yang juga sama, dengan catatan sample dan standard dijalankan dengan kondisi dan sistem HPLC yang sama. Namun bukan berarti RT yang sama pasti merupakan zat/senyawa yang sama. Disinilah para analis biasanya terkecoh.
Jadi, melihat RT sebetulnya belumlah cukup untuk mengidentifikasi suatu zat. Hal lain yang perlu dilihat adalah spektrum 3D dari signal kromatogram. Zat yang sama akan mempunyai spektrum 3D yang juga sama. Sehingga jika spektrum 3D antara dua zat berbeda, maka kedua zat tersebut juga dipastikan adalah zat yang berlainan, meskipun memiliki RT yang sama (Riyadi, 2008).
APLIKASI HPLC
Beberapa aplikasi HPC dalam kehidupan :
1)             HPLC dengan prinsip kromatografi banyak digunakan pada industri farmasi dan pestisida.
2)              Zat- zat dengan kepolaran berbeda yaitu antara sedikit polar sampai polar dapat dipisahkan dengan HPLC berdasarkan partisi cair-cair.
3)             Asam-asam nukleat dapat dipisahkan dengan kolom penukar ion yang dikombinasikan dengan kolom butiran berlapis zat berpori.
4)              Morfin, heroin dan semacamnya telah dapat dipisahkan dengan rezin Zipax-SAX.
5)              Dapat memisahkan vitamin-vitamin yang larut dalam air.
6)              Digunakan untuk menentukan berat molekul polimer dan masalah-masalah biokimia.
1.    Analisis Ekstrak Etanol Rimpang Tanaman Zingiberaceae
Rimpang tanaman Zingiberaceae pada umumnya mengandung metabolit sekunder golongan minyak atsiri sebagai zat kandungan yang menguap dan golongan lain berupa zat yang tidak menguap dan bahkan pada beberapa Curcuma spp. dan Kaempferia spp. terdapat komponen utama yang terkristalkan dari ekstrak total yang diuapkan pelarutnya (etanol, heksan) sebagai komponen utama. Banyaknya komponen kandungan dalam rimpang dengan berbagai polaritas menuntut penggunaan metoda analisis kromatografi instrumental dengan selektifitas (resolusi) yang tinggi, kromatografi cari kinerja tinggi (HPLC) untuk komponen yang termolabil, seperti dilakukan untuk stabilitas kandungan gingerol dari rimpang Jahe dan andrografolid dari Sambiloto.
Untuk mendapatkan metoda HPLC dengan resolusi tinggi dibutuhkan cara eluasi gradient, dengan program menurun polaritasnya, yaitu mulai dari 10% metanol sampai metanol 100% dan pada umumnya ditambahkan asam fosfat sebagai cara untuk menekan ionisasi senyawa metabolit sekunder tanaman yang umumnya bersifat asam, seperti prinsip pasangan ion.
 Sampel analisis HPLC dibuat dari simplisia rimpang bentuk serbuk dimaserasi-perkolasi dengan pelarut bahan sampai diperoleh perkolat 10 kali berat bahan. Perkolat diuapkan dengan rotavapor sampai diperoleh kepekatan 1 ml ekstrak = 1 gram serbuk simplisia, diperoleh suatu ekstrak total. Sebelum ekstrak dianalisis HPLC, dilarutkan kembali dalam metanol ( 10X), kemudian dilakukan filtrasi melalui " Sepak " (SPE C18 1 X 1 cm) untuk selanjutnya diinjeksikan sejumlah 20 ul ke HPLC.Kondisi HPLC dalam penelitian adalah sbb.: Eluasi dilakukan gradien pada kondisi awal Solvent-A (As-fosfat 0,1 N dalam aquabidestillata) : Solvent B (Metanol pro HPLC) = 90 10; kemudian program gradien linear selamn 35 menit menuju 100% Metanol, dilanjutkan 15 menit Metanol 100%, dilanjutkan program pencucian kolom dengan 40% MetOH selama 10menit, dan diakhiri kembali kekondisi awal (10% MetOH) dalam waktu 5 menit. Kromatogram direkam selama total waktu 60 menit. Setiap kali injeksi bahan uji (ekstrak) memerlukan waktu 75 menit, kemudian dapat langsung diinjeksikan bahan uji berikutnya. Analisis HPLC dilakukan pada setiap sampel ekstrak dengan kondisi eluasi dan deteksi pada panjang gelombang 254 nm 365 nm. Analisis data : Sidik jari HPLC masing-masing ekstrak dianalisis dan dibedakan berdasarkan jumlah puncak komponen dan waktu retensinya untuk dicari karakterisasinya jika ada dalam campuran atau dalam produk.
Dari hasil pengamatan kromatogram, dapat disimpulkan bawah pada ekstrak C.domestica, C.xanthorrhiza dan C.zedoaria, jumlah puncak pada 254nm sama dengan jumlah puncak yang muncul pada 365nm juga dan jumlah puncak pada 365nm lebih besar dari pada jumlah puncak 254nm, sehingga untuk membuat sidik jari kromatogram HPLC terbaik digunakan deteksi pada 365nm. Pada ekstrak Alpinia galanga, Z.cassumunar, Z.zerumbet dan K.galanga, jumlah puncak pada 365nm sama dengan jumlah puncak yang muncul pada 254nm juga dan jumlah puncak pada 254nm lebih besar dari pada jumlah puncak 365nm, sehingga untuk membuat sidik jari kromatogram HPLC terbaik digunakan deteksi pada 254nm. C heyneana, C aeroginosa, Z offinalis, K pandurata, K angustifolia dan K rotunda jumlah puncak yang muncul sama pada 254nm dan 365nm lebih kecil dari jumlah puncak pada 254nm dan pada 365nm, sehirigga untuk pembuatan sidik jari kromatogram HPLC harus digunakan kombinasi deteksi pada 254nm clan 365nm (Santosa, 2008)
2.    Analisis Vitamin C
Metode HPLC juga dapat digunakan sebagai dasar dari analisis vitamin C, yakni dalam menentukan susunan kimianya.Susunan kimia vitamin C ditemukan pada tahun 1933 oleh ilmuwan Inggris dan Swiss. Isolasi asam askorbat mula-mula ditemukan oleh King dari USA dan Szent-Gyorgy dari Hungaria. Vitamin ini mempunyai dua bentuk, yaitu bentuk oksidasi (bentuk dehydro) dan bentuk reduksi. Kedua bentuk ini mempunyai aktivitas biologi. Dalam makanan bentuk reduksi yang terbanyak. Banyak dehydro dapat terus teroksidasi menjadi diketogulonic acid yang inaktif.
3.  Analisis Anion Nitrat (NO3-)
Nitrat sebagai hasil proses alami atau industri akan bisa memasuki bahan alam atau bahan industri seperti air yang sangat dibutuhkan manusia atau untuk kebutuhan industri. Kandungan dalam jumlah tertentu akan sangat mempengaruhi kualitas air tersebut. Untuk itu diperlukan suatu metode analisis yang teruji untuk mengukur kandungan nitrtat tersebut. Dengan menggunakan HPLC sebagai instrumen analisis dan dengan pengembangan metode dapat diketahui validitas penggunaan HPLC untuk analisis anion nitrat. Dari beberapa model pemutakhiran HPLC diketahui metode analisis HPLC dengan kolom IC Pak Anion serta eluen campuran Na-Borat glukonat : Butanol : Asetonitril (1:1:10) dan detektor Konduktivitas dapat menganalisis ion nitrat dalam air tangki reaktor, dengan batas deteksi 3,661 ppm dan sensitivitas 0,01 ppm serta uji recovery 110,41+ 1,59% (Setiawan, 2008).
Validasi HPLC Untuk Analisis Anion Nitrat (NO3)

     4.  Pengukuran Tingkat Kematangan Buah Manggis
Mutu buah-buahan segar saat ini umumnva masih dievalusi secara manual yang menggunakan tanda-tanda visual seperti warna kulit. Hasil evaluasi visual yang hanya menilai sifat fisik bagian luar ini tidak selalu mencerminkan tingkat kematangan dan kerusakan bagian dalam buah. Bila ingin menentukan mutu bagian dalam buah harus digunakan cara kimia basah (HPLC) yang bersifat merusak. Dalam menanggulangi masalah ini perlu dilakukan suatu penelitian mengenai teknologi tertentu yang dapat dimanfaatkan untuk menentukan mutu bagian dalam buah-buahan secara tidak merusak.
Hasil penelitian tugas akhir yang telah dilakukan menunjukkan bahwa metode ultrasonik dapat dipakai untuk menentukan tingkat kematangan buah manggis secara tidak merusak. Berdasarkan basil kalibrasi 80 buah manggis, kecepatan gelombang ultrasonik yang merambat melalui buah manggis untuk tiap tingkat kematangan mempunvai nilai yang berbeda-beda. Buah manggis yang masih mentah mempunyai kecepatan gelombang ultrasonik rata-rata 337.4 m/s, untuk buah setengah matang 369.1 m/s, buah matang 397.4 mis, serta untuk buah Iewat matang mempunyai nilai kecepatan rata-rata 449.6 mis. Nilai kecepatan rata-rata gelombang ultrasonik yang merambat pada tiap tingkat kematangan buah digunakan untuk membuat suatu persamaan empiris. Persamaan ini menghubungkan tingkat kematangan terhadap kecepatan gelombang ultrasonik untuk memperkirakan tingkat kematangan berdasarkan ultrasonik. diperoleh Tk = 0.0268 V 7.9258.
Persamaan empiris yang diperoleh diuji dengan pengukuran kecepatan pada berbagai kondisi buah dengan warna visual yang beraneka ragam. Berdasarkan basil uji coba 100 buah manggis diperoleh perbedaan perkiraan kematangan antara ultrasonik dan warna kulit. Perbedaan tersebut mencapai 21%, hal ini menunjukkan bahwa warna kulit belum tentu mencerminkan tingkat kematangan dan kerusakan bagian dalam buah (Sudianto, 2007).


Referensi
Day, R.A dan Underwood, A.L., 2002, Analisis Kimia Kuantitatif, Erlangga, Jakarta.
De Lux Putra, E. (2007). Dasar-dasar Kromatografi Gas & Kromatografi Cair Kinerja Tinggi. Fakultas Farmasi USU-Medan.
Ditjen POM. (1995). Farmakope Indonesia Edisi ke IV. Jakarta: Departemen Kesehatan Republik Indonesia.
Rohman, Abdul. 2007. Kimia Farmasi Analisis. Yogyakarta : Pustaka Pelajar
Riyadi, Wahyu. 2008. Jurnal Identifikasi Signal Kromatogram HPLC. Bandung
Santosa, Mulya Hadi. 2008. Jurnal Perbedaan Sidik Jari Kromatografi Cair Kinerja Tinggi (HPLC) Dengan Sistem Eluasi Gradien Diantara Berbagai Ekstrak Etanol Rimpang Tanaman Zingiberaceae. Surabaya
Setiawan, Budi. 2008. Jurnal Alidasi HPLC Untuk Analisis Anion Nitrat (NO3-). Yogyakarta
Sudianto, Dadi. 2007. Jurnal Pengembangan Metode Pengukuran Tingkat Kematangan Buah Manggis Dengan Ultrasonik. Bandung

Tidak ada komentar:

Posting Komentar